# potfit wiki

open source force-matching

### Sidebar

User Guide

Examples

Potential Databases

More

interactions:eam_elstat

# EAM + electrostatic potential

Info: This page is incomplete and may contain invalid/wrong information!

The EAM + electrostatic potential is a combination of the regular EAM model with an additional coulomb term.

$$E_{tot}=E_{EAM} + \frac{1}{2} \sum_{i\neq j} E(r_{ij}) \quad \text{with} \quad E(r_{ij}) \sim \frac{q_{i}q_{j}}{r_{ij}}$$

## Number of potential functions

To describe a system of $N$ atom types you need $N(N+2)$ potentials.

# atom types $\phi_{ij}$ $f_{ij}$ $g_i$ Total # potentials
$N$ $N(N+1)/2$ $N(N+1)/2$ $N$ $N(N+2)$
1 1 1 1 3
2 3 3 2 8
3 6 6 3 15
4 10 10 4 24

## Order of potential functions

The potential table is assumed to be symmetric, i.e. the potential for the atom types 1-0 is the same as the potential 0-1.

The order of the potentials in the potential file for $N$ atom types is:

$\phi_{00}, \ldots, \phi_{0N}, \phi_{11}, \ldots, \phi_{1N}, \ldots, \phi_{NN}$
$f_{00}, \ldots, f_{0N}, f_{11}, \ldots, f_{1N}, \ldots, f_{NN}$
$g_0, \ldots, g_N$

interactions/eam_elstat.txt · Last modified: 2018/01/06 11:28 by daniel

### Page Tools 